Skip to content

Commit cc2db57

Browse files
authored
Merge 6e7841d into d4afc61
2 parents d4afc61 + 6e7841d commit cc2db57

File tree

2 files changed

+53
-9
lines changed

2 files changed

+53
-9
lines changed

doc/engineering-reference/src/simulation-models-encyclopedic-reference-002/air-system-compound-component-groups.tex

Lines changed: 11 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2994,9 +2994,9 @@ \subsubsection{Equipment Capacity}
29942994
\mathrm{GAHP Heating/Cooling Capacity} = \mathrm{Rated Capacity} \times \mathrm{CAPFT}
29952995
\end{equation}
29962996

2997-
The temperatures used for the equation model are the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.
2997+
The temperatures used for the equation model are the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side and the ambient air temperature ($T_{mathrm{amb}}$).
29982998
\begin{equation}
2999-
\mathrm{CAPFT} = a_1 \times T_{\mathrm{amb}} + b_1 \times T_{\mathrm{amb}}^{2} + c_1 \times T_{\mathrm{ret}} + d_1 \times T_{\mathrm{ret}}^{2} + e_1 \times T_{\mathrm{amb}} \times T_{\mathrm{ret}} + f_1
2999+
\mathrm{CAPFT} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
30003000
\end{equation}
30013001

30023002
\subsubsection{Part Load Ratio}
@@ -3015,13 +3015,13 @@ \subsubsection{Fuel Use}
30153015
\subsubsection{EIR Temperature Adjustment}
30163016
A typical EIR temperature correction function will involve two independent temperature variables---the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.
30173017
\begin{equation}
3018-
\mathrm{EIRFT} = a_2 \times Tamb + b_2 \times T_{\mathrm{amb}}^{2} + c_2 \times T_{\mathrm{ret}}^{2} + d_2 \times T_{\mathrm{ret}}^{2} + e_2 \times T_{\mathrm{amb}} \times T_{\mathrm{ret}} + f_2
3018+
\mathrm{EIRFT} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
30193019
\end{equation}
30203020

30213021
\subsubsection{EIR PLR Adjustment}
30223022
The EIR PLR correction function is a cubic function that takes the PLR as the sole independent variable. For example, a potential curve can be used is like the following:
30233023
\begin{equation}
3024-
\mathrm{EIRFPLR} = 0.0865 \times \mathrm{PLR}^{2} - 0.006 \times \mathrm{PLR} + 0.9814, \mathrm{for} 0.25 \leq \mathrm{PLR} \leq 1
3024+
\mathrm{EIRFPLR} = 0.0865 \times \mathrm{PLR}^{2} - 0.006 \times \mathrm{PLR} + 0.9814, \mathrm{for } 0.25 \leq \mathrm{PLR} \leq 1
30253025
\end{equation}
30263026

30273027
\subsubsection{Defrosting Adjustment (Heating mode only)}
@@ -3044,10 +3044,14 @@ \subsubsection{Cycling Ratio Adjustment}
30443044

30453045
Please note that since the object is based on curve inputs, the user also has the flexibility of defining the curves by themselves---e.g. from the capacity function of temperature to the defrost EIR corrections.
30463046

3047-
\subsubsection{Electricty Use}
3047+
\subsubsection{Electricity Use}
30483048

30493049
The electricity use for the fuel-fired absorption heat pump is modeled using EIR (Electricity based relation) input curves. The two part of electricity use is the ``auxiliary electricity'' and the ``standby electricity'':
30503050
\begin{equation}
3051-
\mathrm{Electricity use} = \mathrm{Norminal Auxiliary Power} \times \mathrm{EIR}_{\mathrm{auxiliary}} + \mathrm{Electricty}_{\mathrm{Standby}},
3051+
\mathrm{Electricity use} = \mathrm{Norminal Auxiliary Power} \times \mathrm{EIR}_{\mathrm{auxiliary}} + \mathrm{Electricity}_{\mathrm{Standby}},
30523052
\end{equation}
3053-
where $\mathrm{EIR}_{\mathrm{auxiliary}}$ are supplied by the curve input, and $\mathrm{Norminal Auxiliary Power}$ and $\mathrm{Electricty}_{\mathrm{Standby}}$ are supplied by the equipment standby electricity inputs.
3053+
Where $\mathrm{Norminal Auxiliary Power}$ and $\mathrm{Electricity}_{\mathrm{Standby}}$ are user inputs and where $\mathrm{EIR}_{\mathrm{auxiliary}}$ is a curve modifier defined as follows and involves two independent temperature variables---the ambient air temperature ($T_{mathrm{amb}}$) and the returning (or entering) water temperature ($T_{\mathrm{ret}}$) of the load side.
3054+
3055+
\begin{equation}
3056+
\mathrm{EIR}_{\mathrm{auxiliary}} = a + b \times T_{\mathrm{ret}} + c \times T_{\mathrm{ret}}^{2} + d \times T_{\mathrm{amb}} + e \times T_{\mathrm{amb}}^{2} + f \times T_{\mathrm{amb}} \times T_{\mathrm{ret}}
3057+
\end{equation}

testfiles/PlantLoopHeatPump_Fuel-Fired.idf

Lines changed: 42 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -275,8 +275,8 @@ HeatPump:AirToWater:FuelFired:Heating,
275275
NotModulated, !- Flow Mode
276276
DryBulb, !- Outdoor Air Temperature Curve Input Variable
277277
EnteringCondenser, !- Water Temperature Curve Input Variable
278-
CapCurveFuncTemp, !- Normalized Capacity Function of Temperature Curve Name
279-
EIRCurveFuncTemp, !- Fuel Energy Input Ratio Function of Temperature Curve Name
278+
HeatingCapCurveFuncTemp, !- Normalized Capacity Function of Temperature Curve Name
279+
HeatingEIRCurveFuncTemp, !- Fuel Energy Input Ratio Function of Temperature Curve Name
280280
EIRCurveFuncPLR, !- Fuel Energy Input Ratio Function of PLR Curve Name
281281
0.2, !- Minimum Part Load Ratio
282282
1.0, !- Maximum Part Load Ratio
@@ -334,6 +334,24 @@ HeatPump:AirToWater:FuelFired:Heating,
334334
-100, !- Minimum Value of x
335335
100; !- Maximum Value of x
336336

337+
!- From Table 3 in "Pathways to Decarbonization of Residential Heating", Fridlyand et al. (2021)
338+
Curve:Biquadratic,
339+
HeatingCapCurveFuncTemp, !- Name
340+
1.011452, !- Coefficient1 Constant
341+
0.004093, !- Coefficient2 x
342+
-0.00014, !- Coefficient3 x**2
343+
0.00428, !- Coefficient4 y
344+
-0.000086, !- Coefficient5 y**2
345+
0.00000226, !- Coefficient6 x*y
346+
-100, !- Minimum Value of x
347+
100, !- Maximum Value of x
348+
-30.0, !- Minimum Value of y
349+
10.0, !- Maximum Value of y
350+
, !- Minimum Curve Output
351+
, !- Maximum Curve Output
352+
Temperature, !- Input Unit Type for X
353+
Temperature, !- Input Unit Type for Y
354+
Dimensionless; !- Output Unit Type
337355

338356
Curve:Biquadratic,
339357
CapCurveFuncTemp, !- Name
@@ -353,6 +371,28 @@ HeatPump:AirToWater:FuelFired:Heating,
353371
Temperature, !- Input Unit Type for Y
354372
Dimensionless; !- Output Unit Type
355373

374+
!- Adapted from Table 3 in "Pathways to Decarbonization of Residential Heating", Fridlyand et al. (2021)
375+
!- The curve from Table 3 output an adjusted EIR and not an EIR modifier
376+
!- The curve from Table 3 has been renormalized at the ANSI rating conditions of 95°F return and 47°F ambient to represent an EIR modifier
377+
378+
Curve:Biquadratic,
379+
HeatingEIRCurveFuncTemp, !- Name
380+
0.559888009625229, !- Coefficient1 Constant
381+
0.0171957698511524, !- Coefficient2 x
382+
-0.0000891729967627554, !- Coefficient3 x**2
383+
-0.00464869065091091, !- Coefficient4 y
384+
0.00009648225879249, !- Coefficient5 y**2
385+
-0.0000701689154854473, !- Coefficient6 x*y
386+
-100, !- Minimum Value of x
387+
100, !- Maximum Value of x
388+
-30.0, !- Minimum Value of y
389+
10.0, !- Maximum Value of y
390+
, !- Minimum Curve Output
391+
, !- Maximum Curve Output
392+
Temperature, !- Input Unit Type for X
393+
Temperature, !- Input Unit Type for Y
394+
Dimensionless; !- Output Unit Type
395+
356396
Curve:Biquadratic,
357397
EIRCurveFuncTemp, !- Name
358398
1.0, !- Coefficient1 Constant

0 commit comments

Comments
 (0)