|
| 1 | +import datetime |
| 2 | +import json |
| 3 | +import os |
| 4 | +import uuid |
| 5 | + |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | + |
| 9 | +from . import storage |
| 10 | + |
| 11 | +client = storage.storage.get_instance() |
| 12 | + |
| 13 | +MODEL_FILE = "dlrm_tiny.pt" |
| 14 | +MODEL_CACHE = "/tmp/dlrm_gpu_model" |
| 15 | + |
| 16 | +_model = None |
| 17 | +_device = torch.device("cpu") |
| 18 | + |
| 19 | + |
| 20 | +class TinyDLRM(nn.Module): |
| 21 | + def __init__(self, num_users, num_items, num_categories, embed_dim=8): |
| 22 | + super().__init__() |
| 23 | + self.user_emb = nn.Embedding(num_users, embed_dim) |
| 24 | + self.item_emb = nn.Embedding(num_items, embed_dim) |
| 25 | + self.category_emb = nn.Embedding(num_categories, embed_dim) |
| 26 | + in_dim = embed_dim * 3 + 2 |
| 27 | + hidden = 16 |
| 28 | + self.mlp = nn.Sequential( |
| 29 | + nn.Linear(in_dim, hidden), |
| 30 | + nn.ReLU(), |
| 31 | + nn.Linear(hidden, 1), |
| 32 | + ) |
| 33 | + |
| 34 | + def forward(self, user_id, item_id, category_id, dense): |
| 35 | + features = torch.cat( |
| 36 | + [ |
| 37 | + self.user_emb(user_id), |
| 38 | + self.item_emb(item_id), |
| 39 | + self.category_emb(category_id), |
| 40 | + dense, |
| 41 | + ], |
| 42 | + dim=-1, |
| 43 | + ) |
| 44 | + return torch.sigmoid(self.mlp(features)) |
| 45 | + |
| 46 | + |
| 47 | +def _select_device(): |
| 48 | + if torch.cuda.is_available(): |
| 49 | + return torch.device("cuda") |
| 50 | + raise RuntimeError("CUDA is not available") |
| 51 | + return torch.device("cpu") |
| 52 | + |
| 53 | + |
| 54 | +def _load_model(bucket, prefix): |
| 55 | + global _model, _device |
| 56 | + |
| 57 | + if _model is not None: |
| 58 | + return 0.0, 0.0 |
| 59 | + |
| 60 | + download_begin = datetime.datetime.now() |
| 61 | + os.makedirs(MODEL_CACHE, exist_ok=True) |
| 62 | + tmp_path = os.path.join("/tmp", f"{uuid.uuid4()}-{MODEL_FILE}") |
| 63 | + client.download(bucket, os.path.join(prefix, MODEL_FILE), tmp_path) |
| 64 | + download_end = datetime.datetime.now() |
| 65 | + |
| 66 | + process_begin = datetime.datetime.now() |
| 67 | + checkpoint = torch.load(tmp_path, map_location="cpu") |
| 68 | + meta = checkpoint["meta"] |
| 69 | + _device = _select_device() |
| 70 | + model = TinyDLRM( |
| 71 | + meta["num_users"], meta["num_items"], meta["num_categories"], meta["embed_dim"] |
| 72 | + ) |
| 73 | + model.load_state_dict(checkpoint["state_dict"]) |
| 74 | + model.to(_device) |
| 75 | + model.eval() |
| 76 | + _model = model |
| 77 | + os.remove(tmp_path) |
| 78 | + process_end = datetime.datetime.now() |
| 79 | + |
| 80 | + download_time = (download_end - download_begin) / datetime.timedelta(microseconds=1) |
| 81 | + process_time = (process_end - process_begin) / datetime.timedelta(microseconds=1) |
| 82 | + return download_time, process_time |
| 83 | + |
| 84 | + |
| 85 | +def _prepare_batch(requests): |
| 86 | + user_ids = torch.tensor([req["user_id"] for req in requests], dtype=torch.long, device=_device) |
| 87 | + item_ids = torch.tensor([req["item_id"] for req in requests], dtype=torch.long, device=_device) |
| 88 | + category_ids = torch.tensor( |
| 89 | + [req["category_id"] for req in requests], dtype=torch.long, device=_device |
| 90 | + ) |
| 91 | + dense = torch.tensor( |
| 92 | + [req.get("dense", [0.0, 0.0]) for req in requests], dtype=torch.float32, device=_device |
| 93 | + ) |
| 94 | + return user_ids, item_ids, category_ids, dense |
| 95 | + |
| 96 | + |
| 97 | +def handler(event): |
| 98 | + bucket = event.get("bucket", {}).get("bucket") |
| 99 | + model_prefix = event.get("bucket", {}).get("model") |
| 100 | + requests_prefix = event.get("bucket", {}).get("requests") |
| 101 | + requests_key = event.get("object", {}).get("requests") |
| 102 | + |
| 103 | + download_begin = datetime.datetime.now() |
| 104 | + req_path = os.path.join("/tmp", f"{uuid.uuid4()}-{os.path.basename(requests_key)}") |
| 105 | + client.download(bucket, os.path.join(requests_prefix, requests_key), req_path) |
| 106 | + download_end = datetime.datetime.now() |
| 107 | + |
| 108 | + model_download_time, model_process_time = _load_model(bucket, model_prefix) |
| 109 | + |
| 110 | + with open(req_path, "r") as f: |
| 111 | + payloads = [json.loads(line) for line in f if line.strip()] |
| 112 | + os.remove(req_path) |
| 113 | + |
| 114 | + inference_begin = datetime.datetime.now() |
| 115 | + user_ids, item_ids, category_ids, dense = _prepare_batch(payloads) |
| 116 | + |
| 117 | + with torch.no_grad(): |
| 118 | + scores = _model(user_ids, item_ids, category_ids, dense).squeeze(-1).tolist() |
| 119 | + inference_end = datetime.datetime.now() |
| 120 | + |
| 121 | + predictions = [] |
| 122 | + for req, score in zip(payloads, scores): |
| 123 | + predictions.append( |
| 124 | + { |
| 125 | + "user_id": req["user_id"], |
| 126 | + "item_id": req["item_id"], |
| 127 | + "category_id": req["category_id"], |
| 128 | + "score": score, |
| 129 | + "device": str(_device), |
| 130 | + } |
| 131 | + ) |
| 132 | + |
| 133 | + download_time = (download_end - download_begin) / datetime.timedelta(microseconds=1) |
| 134 | + compute_time = (inference_end - inference_begin) / datetime.timedelta(microseconds=1) |
| 135 | + |
| 136 | + return { |
| 137 | + "result": {"predictions": predictions}, |
| 138 | + "measurement": { |
| 139 | + "download_time": download_time + model_download_time, |
| 140 | + "compute_time": compute_time + model_process_time, |
| 141 | + "model_time": model_process_time, |
| 142 | + "model_download_time": model_download_time, |
| 143 | + }, |
| 144 | + } |
0 commit comments