Skip to content

Kang-Meng/S3DA-LC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Alleviating Imbalanced Pseudo-label Distribution: Self-Supervised Multi-Source Domain Adaptation with Label-specific Confidence

Official implementation for S3DA-LC (Based on SImpAl)

Parameters:

  • --tau : refer to $\tau$ in paper
  • --w_k : whether to use weights $w_k$
  • --UTF : refer to $\lambda$ in paper

Please refer main.py for the detailed parameters setting.

Training:

python main.py --dataset office-31 --task DW_A --tau 0.9 --UTF 1.5 --w_k 1

t-SNE visualization

after warm up
after converge

Results on Office-31:

Method $\rightarrow$ A $\rightarrow$ W $\rightarrow$ D Avg
CAiDA 75.8 98.9 99.8 91.6
DECISION 75.4 98.4 99.6 91.1
SPS 73.8 99.3 100.0 91.10
S3DA-lc 78.1 99.0 100.0 92.4

Results on Office-Home:

Method $\rightarrow$ Ar $\rightarrow$ Cl $\rightarrow$ Pr $\rightarrow$ Rw Avg
CAiDA 75.2 60.5 84.7 84.2 76.2
DECISION 74.5 59.4 84.4 83.6 75.5
SPS 75.1 66.0 84.4 84.2 77.4
S3DA-lc 78.1 70.0 87.4 87.2 80.7

Results on DomainNet:

Method $\rightarrow$ Clp $\rightarrow$ Inf $\rightarrow$ Pnt $\rightarrow$ Qdr $\rightarrow$ Rel $\rightarrow$ Skt Avg
MSCAN 69.3 28.0 58.6 30.3 73.3 59.5 53.2
KD3A 72.5 23.4 60.9 16.4 72.7 60.6 51.1
STEM 72.0 28.2 61.5 25.7 72.6 60.2 53.4
S3DA-lc 71.9 31.3 61.3 27.1 75.7 61.2 54.8

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages