|
| 1 | +Require Import Basics.Overture Basics.Tactics Basics.Equivalences Basics.Iff. |
| 2 | +Require Import Types.Universe. |
| 3 | +Require Import Groups.Group AbGroups.Abelianization AbGroups.AbelianGroup |
| 4 | + Groups.Commutator Groups.QuotientGroup. |
| 5 | +Require Import WildCat.Core WildCat.Equiv. |
| 6 | + |
| 7 | +Local Open Scope mc_scope. |
| 8 | +Local Open Scope mc_mult_scope. |
| 9 | +Local Open Scope group_scope. |
| 10 | + |
| 11 | +(** * Perfect Groups *) |
| 12 | + |
| 13 | +(** ** Definition *) |
| 14 | + |
| 15 | +(** A group is perfect if its abelianization is trivial. *) |
| 16 | +Class IsPerfect (G : Group) := contr_abel_isperfect :: IsTrivialGroup (abel G). |
| 17 | + |
| 18 | +(** A group is perfect if its commutator subgroup is the maximal subgroup. *) |
| 19 | +Instance isperfect_maximal_commutator (G : Group) |
| 20 | + : IsMaximalSubgroup [G, G] -> IsPerfect G. |
| 21 | +Proof. |
| 22 | + intros max. |
| 23 | + apply istrivial_iff_grp_iso_trivial. |
| 24 | + nrefine (_ $oE grp_iso_subgroup_group_maximal _). |
| 25 | + refine (_ $oE emap abgroup_group (@groupiso_isabelianization G _ _ _ _ _ |
| 26 | + (isabelianization_derived_quotient _))). |
| 27 | + exact (fst (istrivial_iff_grp_iso_trivial (abgroup_derived_quotient G)) _ |
| 28 | + $oE (grp_iso_subgroup_group_maximal _)^-1$). |
| 29 | +Defined. |
| 30 | + |
| 31 | +(** Conversely, the commutator subgroup of any perfect group is the maximal subgroup. *) |
| 32 | +Definition ismaximalsubgroup_commutator_isperfect `{Univalence} (G : Group) |
| 33 | + : IsPerfect G -> IsMaximalSubgroup [G, G]. |
| 34 | +Proof. |
| 35 | + intros p. |
| 36 | + napply (ismaximalsubgroup_istrivial_grp_quotient _ (normalsubgroup_derived _)). |
| 37 | + srapply (istrivial_grp_iso (abel G)). |
| 38 | + nrefine (_^-1$ $oE _ $oE _). |
| 39 | + 1,3: apply grp_iso_subgroup_group_maximal. |
| 40 | + exact (emap abgroup_group (@groupiso_isabelianization G _ _ _ _ _ |
| 41 | + (isabelianization_derived_quotient _))). |
| 42 | +Defined. |
| 43 | + |
| 44 | +(** ** Basic properties *) |
| 45 | + |
| 46 | +(** All simple non-abelian groups are perfect. *) |
| 47 | +Definition isperfect_simple_nonabelian `{Univalence} |
| 48 | + (G : Group) {s : IsSimpleGroup G} |
| 49 | + (na : ~ Commutative (A:=G) (.*.)) |
| 50 | + : IsPerfect G. |
| 51 | +Proof. |
| 52 | + (** Since [G] is simple, we can assume the commutator [ [G, G] ] is either trivial or maximal. *) |
| 53 | + destruct (s [G, G] _) as [triv | max]. |
| 54 | + 2: by apply isperfect_maximal_commutator. |
| 55 | + contradiction na. |
| 56 | + intros x y. |
| 57 | + lhs napply grp_commutator_swap_op. |
| 58 | + lhs_V napply grp_assoc. |
| 59 | + rhs_V napply grp_unit_l. |
| 60 | + apply (ap (.* _)). |
| 61 | + apply triv. |
| 62 | + by apply subgroup_commutator_in. |
| 63 | +Defined. |
| 64 | + |
| 65 | +(** A quotient of a perfect group is perfect. *) |
| 66 | +Definition isperfect_grp_quotient `{Univalence} |
| 67 | + (G : Group) (N : NormalSubgroup G) |
| 68 | + : IsPerfect G -> IsPerfect (G / N). |
| 69 | +Proof. |
| 70 | + intros perf. |
| 71 | + apply isperfect_maximal_commutator. |
| 72 | + rapply grp_quotient_ind_hprop. |
| 73 | + intros x. |
| 74 | + apply ismaximalsubgroup_commutator_isperfect in perf. |
| 75 | + generalize (perf x); revert x. |
| 76 | + change ([G / N, G / N] (grp_quotient_map ?x)) |
| 77 | + with (subgroup_preimage grp_quotient_map [G / N, G / N] x). |
| 78 | + napply subgroup_commutator_rec. |
| 79 | + intros x y _ _. |
| 80 | + change ([G / N, G / N] (grp_quotient_map (grp_commutator x y))). |
| 81 | + rewrite grp_homo_commutator. |
| 82 | + by apply subgroup_commutator_in. |
| 83 | +Defined. |
0 commit comments