|
| 1 | +(** * Additive categories |
| 2 | +
|
| 3 | + Categories enriched over abelian groups with zero objects and biproducts. |
| 4 | +*) |
| 5 | + |
| 6 | +From HoTT Require Import Basics Types. |
| 7 | +From HoTT.Categories Require Import Category Functor NaturalTransformation. |
| 8 | +From HoTT.Categories.Additive Require Import ZeroObjects Biproducts. |
| 9 | + |
| 10 | +(** * Additive categories *) |
| 11 | + |
| 12 | +(** ** Definition |
| 13 | + |
| 14 | + An additive category has a zero object and biproducts for all pairs |
| 15 | + of objects. This is a key step toward abelian categories. |
| 16 | +*) |
| 17 | + |
| 18 | +Class AdditiveCategory := { |
| 19 | + cat : PreCategory; |
| 20 | + add_zero :: ZeroObject cat; |
| 21 | + add_biproduct : forall (X Y : object cat), Biproduct X Y; |
| 22 | + |
| 23 | + (** Addition of morphisms *) |
| 24 | + add_morphism : forall {X Y : object cat}, |
| 25 | + morphism cat X Y -> morphism cat X Y -> morphism cat X Y; |
| 26 | + |
| 27 | + (** Addition is associative *) |
| 28 | + add_morphism_assoc : forall {X Y : object cat} (f g h : morphism cat X Y), |
| 29 | + add_morphism (add_morphism f g) h = add_morphism f (add_morphism g h); |
| 30 | + |
| 31 | + (** Addition is commutative *) |
| 32 | + add_morphism_comm : forall {X Y : object cat} (f g : morphism cat X Y), |
| 33 | + add_morphism f g = add_morphism g f; |
| 34 | + |
| 35 | + (** Zero morphism is the additive identity (left) *) |
| 36 | + add_morphism_zero_l : forall {X Y : object cat} (f : morphism cat X Y), |
| 37 | + add_morphism (@zero_morphism cat add_zero X Y) f = f; |
| 38 | + |
| 39 | + (** Zero morphism is the additive identity (right) *) |
| 40 | + add_morphism_zero_r : forall {X Y : object cat} (f : morphism cat X Y), |
| 41 | + add_morphism f (@zero_morphism cat add_zero X Y) = f; |
| 42 | + |
| 43 | + (** Every morphism has an additive inverse *) |
| 44 | + add_morphism_inverse : forall {X Y : object cat} (f : morphism cat X Y), |
| 45 | + {g : morphism cat X Y & |
| 46 | + add_morphism f g = @zero_morphism cat add_zero X Y}; |
| 47 | + |
| 48 | + (** Composition is bilinear - left distributivity *) |
| 49 | + composition_bilinear_l : forall {X Y Z : object cat} |
| 50 | + (f g : morphism cat X Y) (h : morphism cat Y Z), |
| 51 | + (h o add_morphism f g)%morphism = |
| 52 | + add_morphism (h o f) (h o g); |
| 53 | + |
| 54 | + (** Composition is bilinear - right distributivity *) |
| 55 | + composition_bilinear_r : forall {X Y Z : object cat} |
| 56 | + (f : morphism cat X Y) (g h : morphism cat Y Z), |
| 57 | + (add_morphism g h o f)%morphism = |
| 58 | + add_morphism (g o f) (h o f) |
| 59 | +}. |
| 60 | + |
| 61 | +Coercion cat : AdditiveCategory >-> PreCategory. |
| 62 | + |
| 63 | +(** ** Helper functions *) |
| 64 | + |
| 65 | +(** Access the zero object. *) |
| 66 | +Definition zero_obj (A : AdditiveCategory) : object A |
| 67 | + := @zero A add_zero. |
| 68 | + |
| 69 | +(** Zero morphism in an additive category. *) |
| 70 | +Definition add_zero_morphism (A : AdditiveCategory) (X Y : object A) |
| 71 | + : morphism A X Y |
| 72 | + := @zero_morphism A add_zero X Y. |
| 73 | + |
| 74 | +(** Helper functions to access biproduct components. *) |
| 75 | +Definition add_biproduct_data (A : AdditiveCategory) (X Y : object A) |
| 76 | + : BiproductData X Y |
| 77 | + := biproduct_data (@add_biproduct A X Y). |
| 78 | + |
| 79 | +Definition add_biproduct_obj (A : AdditiveCategory) (X Y : object A) |
| 80 | + : object A |
| 81 | + := biproduct_obj (add_biproduct_data A X Y). |
| 82 | + |
| 83 | +(** Notation for biproduct object. *) |
| 84 | +Notation "X ⊕ Y" := (add_biproduct_obj _ X Y) |
| 85 | + (at level 40, left associativity). |
| 86 | + |
| 87 | +(** Biproduct injections. *) |
| 88 | +Definition add_inl {A : AdditiveCategory} {X Y : object A} |
| 89 | + : morphism A X (X ⊕ Y) |
| 90 | + := inl (add_biproduct_data A X Y). |
| 91 | + |
| 92 | +Definition add_inr {A : AdditiveCategory} {X Y : object A} |
| 93 | + : morphism A Y (X ⊕ Y) |
| 94 | + := inr (add_biproduct_data A X Y). |
| 95 | + |
| 96 | +(** Biproduct projections. *) |
| 97 | +Definition add_outl {A : AdditiveCategory} {X Y : object A} |
| 98 | + : morphism A (X ⊕ Y) X |
| 99 | + := outl (add_biproduct_data A X Y). |
| 100 | + |
| 101 | +Definition add_outr {A : AdditiveCategory} {X Y : object A} |
| 102 | + : morphism A (X ⊕ Y) Y |
| 103 | + := outr (add_biproduct_data A X Y). |
| 104 | + |
| 105 | +(** ** Universal property operations *) |
| 106 | + |
| 107 | +Section AdditiveOperations. |
| 108 | + Context (A : AdditiveCategory). |
| 109 | + |
| 110 | + (** Universal property of biproducts as coproducts. *) |
| 111 | + Definition add_coprod_mor {X Y Z : object A} |
| 112 | + (f : morphism A X Z) (g : morphism A Y Z) |
| 113 | + : morphism A (X ⊕ Y) Z |
| 114 | + := biproduct_coprod_mor (@add_biproduct A X Y) Z f g. |
| 115 | + |
| 116 | + Definition add_coprod_unique {X Y Z : object A} |
| 117 | + (f : morphism A X Z) (g : morphism A Y Z) |
| 118 | + (h : morphism A (X ⊕ Y) Z) |
| 119 | + (Hl : (h o add_inl = f)%morphism) |
| 120 | + (Hr : (h o add_inr = g)%morphism) |
| 121 | + : h = add_coprod_mor f g |
| 122 | + := @biproduct_coprod_unique A add_zero X Y |
| 123 | + (@add_biproduct A X Y) Z f g h Hl Hr. |
| 124 | + |
| 125 | + (** Universal property of biproducts as products. *) |
| 126 | + Definition add_prod_mor {X Y Z : object A} |
| 127 | + (f : morphism A Z X) (g : morphism A Z Y) |
| 128 | + : morphism A Z (X ⊕ Y) |
| 129 | + := biproduct_prod_mor (@add_biproduct A X Y) Z f g. |
| 130 | + |
| 131 | + Definition add_prod_unique {X Y Z : object A} |
| 132 | + (f : morphism A Z X) (g : morphism A Z Y) |
| 133 | + (h : morphism A Z (X ⊕ Y)) |
| 134 | + (Hl : (add_outl o h = f)%morphism) |
| 135 | + (Hr : (add_outr o h = g)%morphism) |
| 136 | + : h = add_prod_mor f g. |
| 137 | + Proof. |
| 138 | + unfold add_prod_mor. |
| 139 | + set (B := @add_biproduct A X Y). |
| 140 | + set (c := @center _ (prod_universal (biproduct_universal B) Z f g)). |
| 141 | + assert (p : (h; (Hl, Hr)) = c). |
| 142 | + 1: apply (@path_contr _ |
| 143 | + (prod_universal (biproduct_universal B) Z f g)). |
| 144 | + exact (ap pr1 p). |
| 145 | + Qed. |
| 146 | + |
| 147 | +End AdditiveOperations. |
| 148 | + |
| 149 | +(** * Additive functors *) |
| 150 | + |
| 151 | +(** ** Definition |
| 152 | + |
| 153 | + An additive functor preserves the additive structure: zero objects, |
| 154 | + biproducts, and morphism addition. |
| 155 | +*) |
| 156 | + |
| 157 | +Record AdditiveFunctor (A B : AdditiveCategory) := { |
| 158 | + add_functor :> Functor A B; |
| 159 | + |
| 160 | + preserves_zero : |
| 161 | + object_of add_functor (zero_obj A) = zero_obj B; |
| 162 | + |
| 163 | + preserves_biproduct : forall (X Y : object A), |
| 164 | + object_of add_functor (X ⊕ Y) = |
| 165 | + (object_of add_functor X ⊕ object_of add_functor Y); |
| 166 | + |
| 167 | + (** Additive functors preserve addition of morphisms *) |
| 168 | + preserves_addition : forall {X Y : object A} (f g : morphism A X Y), |
| 169 | + morphism_of add_functor (add_morphism f g) = |
| 170 | + add_morphism (morphism_of add_functor f) |
| 171 | + (morphism_of add_functor g) |
| 172 | +}. |
| 173 | + |
| 174 | +(** ** Properties of additive functors *) |
| 175 | + |
| 176 | +Section AdditiveFunctorProperties. |
| 177 | + Context (A B : AdditiveCategory) (F : AdditiveFunctor A B). |
| 178 | + |
| 179 | + (** Helper lemmas for preservation properties. *) |
| 180 | + |
| 181 | + (** Additive functors preserve initial morphisms. *) |
| 182 | + Local Lemma functor_preserves_initial_morphism (Y : object A) |
| 183 | + : transport (fun W => morphism B W (object_of F Y)) |
| 184 | + (@preserves_zero A B F) |
| 185 | + (morphism_of F |
| 186 | + (@morphism_from_initial A |
| 187 | + (initialobject_zeroobject (@add_zero A)) Y)) = |
| 188 | + @morphism_from_initial B |
| 189 | + (initialobject_zeroobject (@add_zero B)) |
| 190 | + (object_of F Y). |
| 191 | + Proof. |
| 192 | + rapply path_contr. |
| 193 | + Qed. |
| 194 | + |
| 195 | + (** Additive functors preserve terminal morphisms. *) |
| 196 | + Local Lemma functor_preserves_terminal_morphism (X : object A) |
| 197 | + : transport (fun W => morphism B (object_of F X) W) |
| 198 | + (@preserves_zero A B F) |
| 199 | + (morphism_of F |
| 200 | + (@morphism_to_terminal A |
| 201 | + (terminalobject_zeroobject (@add_zero A)) X)) = |
| 202 | + @morphism_to_terminal B |
| 203 | + (terminalobject_zeroobject (@add_zero B)) |
| 204 | + (object_of F X). |
| 205 | + Proof. |
| 206 | + rapply path_contr. |
| 207 | + Qed. |
| 208 | + |
| 209 | + (** Transporting morphisms across an equality. *) |
| 210 | + Local Lemma transport_morphism_compose {C : PreCategory} |
| 211 | + {W X Y Z : C} (p : W = X) |
| 212 | + (f : morphism C Y W) (g : morphism C W Z) |
| 213 | + : transport (fun U => morphism C Y Z) p (g o f)%morphism = |
| 214 | + (transport (fun U => morphism C U Z) p g o |
| 215 | + transport (fun U => morphism C Y U) p f)%morphism. |
| 216 | + Proof. |
| 217 | + destruct p. reflexivity. |
| 218 | + Qed. |
| 219 | + |
| 220 | + (** F preserves the zero morphism components. *) |
| 221 | + Local Lemma F_preserves_zero_morphism_factorization (X Y : object A) |
| 222 | + : morphism_of F (add_zero_morphism A X Y) = |
| 223 | + (morphism_of F |
| 224 | + (@morphism_from_initial A |
| 225 | + (initialobject_zeroobject (@add_zero A)) Y) o |
| 226 | + morphism_of F |
| 227 | + (@morphism_to_terminal A |
| 228 | + (terminalobject_zeroobject (@add_zero A)) X))%morphism. |
| 229 | + Proof. |
| 230 | + unfold add_zero_morphism, zero_morphism. |
| 231 | + apply composition_of. |
| 232 | + Qed. |
| 233 | + |
| 234 | + (** F preserves composition through zero. *) |
| 235 | + Local Lemma F_preserves_composition_through_zero (X Y : object A) |
| 236 | + : (morphism_of F |
| 237 | + (@morphism_from_initial A |
| 238 | + (initialobject_zeroobject (@add_zero A)) Y) o |
| 239 | + morphism_of F |
| 240 | + (@morphism_to_terminal A |
| 241 | + (terminalobject_zeroobject (@add_zero A)) X))%morphism = |
| 242 | + (@morphism_from_initial B |
| 243 | + (initialobject_zeroobject (@add_zero B)) (object_of F Y) o |
| 244 | + @morphism_to_terminal B |
| 245 | + (terminalobject_zeroobject (@add_zero B)) (object_of F X))%morphism. |
| 246 | + Proof. |
| 247 | + set (p := @preserves_zero A B F). |
| 248 | + symmetry. |
| 249 | + transitivity |
| 250 | + ((transport (fun W => morphism B W (object_of F Y)) p |
| 251 | + (morphism_of F |
| 252 | + (@morphism_from_initial A |
| 253 | + (initialobject_zeroobject (@add_zero A)) Y)) o |
| 254 | + transport (fun W => morphism B (object_of F X) W) p |
| 255 | + (morphism_of F |
| 256 | + (@morphism_to_terminal A |
| 257 | + (terminalobject_zeroobject (@add_zero A)) X)))%morphism). |
| 258 | + 2: apply transport_compose_middle. |
| 259 | + apply ap011. |
| 260 | + - symmetry. exact (functor_preserves_initial_morphism Y). |
| 261 | + - symmetry. exact (functor_preserves_terminal_morphism X). |
| 262 | + Qed. |
| 263 | + |
| 264 | + (** ** Main theorem: additive functors preserve zero morphisms *) |
| 265 | + |
| 266 | + Theorem additive_functor_preserves_zero_morphisms (X Y : object A) |
| 267 | + : morphism_of F (add_zero_morphism A X Y) = |
| 268 | + add_zero_morphism B (object_of F X) (object_of F Y). |
| 269 | + Proof. |
| 270 | + rewrite F_preserves_zero_morphism_factorization. |
| 271 | + unfold add_zero_morphism, zero_morphism. |
| 272 | + exact (F_preserves_composition_through_zero X Y). |
| 273 | + Qed. |
| 274 | + |
| 275 | +End AdditiveFunctorProperties. |
| 276 | + |
| 277 | +(** * Examples and constructions *) |
| 278 | + |
| 279 | +(** The identity functor is additive. *) |
| 280 | +Definition id_additive_functor (A : AdditiveCategory) |
| 281 | + : AdditiveFunctor A A |
| 282 | + := {| |
| 283 | + add_functor := 1%functor; |
| 284 | + preserves_zero := idpath; |
| 285 | + preserves_biproduct := fun X Y => idpath; |
| 286 | + preserves_addition := fun X Y f g => idpath |
| 287 | + |}. |
| 288 | + |
| 289 | +(** Composition of additive functors is additive. *) |
| 290 | +Definition compose_additive_functors {A B C : AdditiveCategory} |
| 291 | + (G : AdditiveFunctor B C) (F : AdditiveFunctor A B) |
| 292 | + : AdditiveFunctor A C. |
| 293 | +Proof. |
| 294 | + refine {| |
| 295 | + add_functor := (G o F)%functor; |
| 296 | + preserves_zero := |
| 297 | + ap (object_of G) (@preserves_zero A B F) @ |
| 298 | + (@preserves_zero B C G); |
| 299 | + preserves_biproduct := fun X Y => |
| 300 | + ap (object_of G) (@preserves_biproduct A B F X Y) @ |
| 301 | + @preserves_biproduct B C G (object_of F X) (object_of F Y); |
| 302 | + preserves_addition := _ |
| 303 | + |}. |
| 304 | + intros X Y f g. |
| 305 | + simpl. |
| 306 | + rewrite (@preserves_addition A B F X Y f g). |
| 307 | + apply (@preserves_addition B C G (object_of F X) (object_of F Y)). |
| 308 | +Defined. |
| 309 | + |
| 310 | +(** * Export hints *) |
| 311 | + |
| 312 | +Hint Rewrite |
| 313 | + @additive_functor_preserves_zero_morphisms |
| 314 | + : additive_simplify. |
| 315 | + |
0 commit comments