We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 61d641e commit 0886284Copy full SHA for 0886284
bindsnet/evaluation/evaluation.py
@@ -195,13 +195,13 @@ def ngram(
195
196
# Aggregate all of the firing neurons' indices
197
fire_order = []
198
- for t in range(activity.size()[0]):
199
- ordering = torch.nonzero(activity[t].view(-1))
+ for t in range(activity.size(0)):
+ ordering = torch.nonzero(activity[t]).view(-1)
200
if ordering.numel() > 0:
201
- fire_order += ordering[:, 0].tolist()
+ fire_order += ordering.tolist()
202
203
# Consider all n-gram sequences.
204
- for j in range(len(fire_order) - n):
+ for j in range(len(fire_order) - n + 1):
205
if tuple(fire_order[j : j + n]) in ngram_scores:
206
score += ngram_scores[tuple(fire_order[j : j + n])]
207
0 commit comments