Skip to content

Commit 1dd8717

Browse files
baoachunAnnaTrainingG
authored andcommitted
add gather trt converter test case (PaddlePaddle#35523)
1 parent 64b6e2e commit 1dd8717

File tree

2 files changed

+224
-0
lines changed

2 files changed

+224
-0
lines changed

paddle/fluid/inference/tensorrt/op_teller.cc

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -319,6 +319,17 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
319319

320320
if (op_type == "gather") {
321321
if (!with_dynamic_shape) return false;
322+
323+
if (with_dynamic_shape) {
324+
auto* block = desc.Block();
325+
auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
326+
const auto x_shape = x_var_desc->GetShape();
327+
if (x_shape.size() == 1) {
328+
VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
329+
return false;
330+
}
331+
}
332+
322333
auto inputs = desc.InputArgumentNames();
323334
for (auto& input : inputs) {
324335
if (input == "Axis" && desc.Input("Axis").size() > 0) return false;
Lines changed: 213 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,213 @@
1+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
16+
from program_config import TensorConfig, ProgramConfig
17+
import numpy as np
18+
import paddle.inference as paddle_infer
19+
from functools import partial
20+
from typing import Optional, List, Callable, Dict, Any, Set
21+
import logging
22+
23+
24+
class TrtConvertGatherTest(TrtLayerAutoScanTest):
25+
def is_program_valid(self, program_config: ProgramConfig) -> bool:
26+
inputs = program_config.inputs
27+
attrs = [
28+
program_config.ops[i].attrs
29+
for i in range(len(program_config.ops))
30+
]
31+
if len(inputs['input_data'].shape) <= attrs[0]['axis']:
32+
return False
33+
34+
return True
35+
36+
def sample_program_configs(self):
37+
def generate_input1(shape):
38+
return np.random.random(shape).astype(np.float32)
39+
40+
def generate_input2(index):
41+
return np.array(index).astype(np.int32)
42+
43+
def generate_input3(axis):
44+
return np.array([axis]).astype(np.int32)
45+
46+
for shape in [[32], [16, 64], [32, 16, 16], [32, 64, 16, 32]]:
47+
for index in [[1, 4], [4, 8]]:
48+
for axis in [0, 1, 2, 3]:
49+
for overwrite in [True, False]:
50+
for input in [{
51+
"X": ["input_data"],
52+
"Index": ["index_data"]
53+
}, {
54+
"X": ["input_data"],
55+
"Index": ["index_data"],
56+
"Axis": ["axis_data"]
57+
}]:
58+
self.shape = shape
59+
self.axis = axis
60+
self.input_num = len(input)
61+
dics = [{"overwrite": overwrite, "axis": axis}]
62+
ops_config = [{
63+
"op_type": "gather",
64+
"op_inputs": input,
65+
"op_outputs": {
66+
"Out": ["output_data"]
67+
},
68+
"op_attrs": dics[0]
69+
}]
70+
ops = self.generate_op_config(ops_config)
71+
72+
program_config = ProgramConfig(
73+
ops=ops,
74+
weights={},
75+
inputs={
76+
"input_data": TensorConfig(data_gen=partial(
77+
generate_input1, shape)),
78+
"index_data": TensorConfig(data_gen=partial(
79+
generate_input2, index)),
80+
} if len(input) == 2 else {
81+
"input_data": TensorConfig(data_gen=partial(
82+
generate_input1, shape)),
83+
"index_data": TensorConfig(data_gen=partial(
84+
generate_input2, index)),
85+
"axis_data": TensorConfig(data_gen=partial(
86+
generate_input3, axis)),
87+
},
88+
outputs=["output_data"])
89+
90+
yield program_config
91+
92+
def sample_predictor_configs(
93+
self, program_config) -> (paddle_infer.Config, List[int], float):
94+
def generate_dynamic_shape(attrs):
95+
if len(self.shape) == 1:
96+
self.dynamic_shape.min_input_shape = {
97+
"input_data": [4],
98+
"index_data": [1]
99+
}
100+
self.dynamic_shape.max_input_shape = {
101+
"input_data": [128],
102+
"index_data": [4]
103+
}
104+
self.dynamic_shape.opt_input_shape = {
105+
"input_data": [16],
106+
"index_data": [2]
107+
}
108+
elif len(self.shape) == 2:
109+
self.dynamic_shape.min_input_shape = {
110+
"input_data": [2, 4],
111+
"index_data": [1]
112+
}
113+
self.dynamic_shape.max_input_shape = {
114+
"input_data": [256, 256],
115+
"index_data": [4]
116+
}
117+
self.dynamic_shape.opt_input_shape = {
118+
"input_data": [64, 32],
119+
"index_data": [2]
120+
}
121+
elif len(self.shape) == 3:
122+
self.dynamic_shape.min_input_shape = {
123+
"input_data": [2, 4, 4],
124+
"index_data": [1]
125+
}
126+
self.dynamic_shape.max_input_shape = {
127+
"input_data": [128, 256, 256],
128+
"index_data": [4]
129+
}
130+
self.dynamic_shape.opt_input_shape = {
131+
"input_data": [16, 64, 32],
132+
"index_data": [2]
133+
}
134+
elif len(self.shape) == 4:
135+
self.dynamic_shape.min_input_shape = {
136+
"input_data": [2, 4, 4, 2],
137+
"index_data": [1]
138+
}
139+
self.dynamic_shape.max_input_shape = {
140+
"input_data": [128, 256, 128, 256],
141+
"index_data": [4]
142+
}
143+
self.dynamic_shape.opt_input_shape = {
144+
"input_data": [16, 64, 16, 32],
145+
"index_data": [2]
146+
}
147+
148+
def clear_dynamic_shape():
149+
self.dynamic_shape.max_input_shape = {}
150+
self.dynamic_shape.min_input_shape = {}
151+
self.dynamic_shape.opt_input_shape = {}
152+
153+
def generate_trt_nodes_num(dynamic_shape):
154+
if self.input_num == 3:
155+
return 0, 5
156+
else:
157+
if dynamic_shape and self.axis == 0:
158+
return 1, 3
159+
else:
160+
return 0, 4
161+
162+
attrs = [
163+
program_config.ops[i].attrs
164+
for i in range(len(program_config.ops))
165+
]
166+
167+
# for static_shape
168+
clear_dynamic_shape()
169+
self.trt_param.precision = paddle_infer.PrecisionType.Float32
170+
yield self.create_inference_config(), generate_trt_nodes_num(
171+
False), 1e-5
172+
self.trt_param.precision = paddle_infer.PrecisionType.Half
173+
yield self.create_inference_config(), generate_trt_nodes_num(
174+
False), 1e-5
175+
176+
# for dynamic_shape
177+
generate_dynamic_shape(attrs)
178+
self.trt_param.precision = paddle_infer.PrecisionType.Float32
179+
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
180+
self.trt_param.precision = paddle_infer.PrecisionType.Half
181+
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
182+
183+
def add_skip_trt_case(self):
184+
def teller1(program_config, predictor_config):
185+
if len(self.dynamic_shape.min_input_shape) != 0:
186+
inputs = program_config.inputs
187+
if len(inputs['input_data'].shape) == 1 or len(inputs[
188+
'index_data'].shape) == 1:
189+
return True
190+
return False
191+
192+
self.add_skip_case(
193+
teller1, SkipReasons.TRT_NOT_SUPPORT,
194+
"Need to repair the case: trt reshape out failed for dynamic shape mode when inputs' dims==1."
195+
)
196+
197+
def teller2(program_config, predictor_config):
198+
inputs = program_config.inputs
199+
if "axis_data" in inputs.keys():
200+
return True
201+
return False
202+
203+
self.add_skip_case(
204+
teller2, SkipReasons.TRT_NOT_SUPPORT,
205+
"Need to repair the case: trt do not support axis tensor input.")
206+
207+
def test(self):
208+
self.add_skip_trt_case()
209+
self.run_test()
210+
211+
212+
if __name__ == "__main__":
213+
unittest.main()

0 commit comments

Comments
 (0)