11# iLLuMinator 4.9B - Advanced Large Language Model
22
3- ## 🎯 Complete AI System Built From Scratch
3+ ## Complete AI System Built From Scratch
44
55A comprehensive Large Language Model implementation featuring both a production-ready 4.9 billion parameter CUDA-optimized model and a practical 120 million parameter CPU model.
66
7- ## 🏗️ Architecture Overview
7+ ## Architecture Overview
88
9- ### 🔥 CUDA Model (4.9B Parameters)
9+ ### CUDA Model (4.9B Parameters)
1010- ** Target Hardware** : RTX 3070, RTX 3080, RTX 3090, A100
1111- ** Optimizations** : Mixed precision, Flash attention, CUDA kernels
1212- ** Performance** : 5-10 tokens/second on RTX 3070
1313- ** Memory** : ~ 6-7GB VRAM for inference
1414
15- ### 💻 Practical Model (120M Parameters)
15+ ### Practical Model (120M Parameters)
1616- ** Target Hardware** : CPU, laptops, edge devices
1717- ** Performance** : 10-12 tokens/second on CPU
1818- ** Memory** : ~ 500MB RAM
1919- ** Use Case** : Development, testing, resource-constrained environments
2020
21- ## 🚀 Quick Start
21+ ## Quick Start
2222
2323### For RTX 3070/3080/3090 Users (Recommended)
2424
@@ -52,31 +52,31 @@ python practical_api_server.py
5252# Access: http://localhost:8001
5353```
5454
55- ## 📊 Model Specifications
55+ ## Model Specifications
5656
5757| Model | Parameters | Layers | Heads | Hidden | Context | Memory | Speed |
5858| -------| ------------| --------| -------| --------| ---------| --------| -------|
5959| CUDA | 4.99B | 30 | 28 | 3584 | 2048 | 6-7GB | 5-10 tok/s |
6060| Practical | 124M | 12 | 12 | 768 | 1024 | 500MB | 10-12 tok/s |
6161
62- ## 🔧 Features
62+ ## Features
6363
6464### Core Capabilities
65- - ✅ ** Complete Transformer Architecture** - Built from scratch
66- - ✅ ** Custom Tokenizer** - GPT-2 compatible with 50,260 vocabulary
67- - ✅ ** CUDA Acceleration** - Optimized for NVIDIA RTX series
68- - ✅ ** Mixed Precision Training** - FP16/FP32 for faster training
69- - ✅ ** Production API** - FastAPI servers with streaming support
70- - ✅ ** Interactive Interface** - Command-line chat client
65+ - ** Complete Transformer Architecture** - Built from scratch
66+ - ** Custom Tokenizer** - GPT-2 compatible with 50,260 vocabulary
67+ - ** CUDA Acceleration** - Optimized for NVIDIA RTX series
68+ - ** Mixed Precision Training** - FP16/FP32 for faster training
69+ - ** Production API** - FastAPI servers with streaming support
70+ - ** Interactive Interface** - Command-line chat client
7171
7272### Advanced Optimizations
73- - 🔥 ** Flash Attention** - Memory-efficient attention computation
74- - 🔥 ** Gradient Checkpointing** - Reduced memory usage during training
75- - 🔥 ** CUDA Kernels** - Low-level GPU optimizations
76- - 🔥 ** TensorFloat-32** - Automatic acceleration on RTX 30xx
77- - 🔥 ** Weight Tying** - Shared input/output embeddings
73+ - ** Flash Attention** - Memory-efficient attention computation
74+ - ** Gradient Checkpointing** - Reduced memory usage during training
75+ - ** CUDA Kernels** - Low-level GPU optimizations
76+ - ** TensorFloat-32** - Automatic acceleration on RTX 30xx
77+ - ** Weight Tying** - Shared input/output embeddings
7878
79- ## 📁 Project Structure
79+ ## Project Structure
8080
8181```
8282iLLuMinator-4.7B/
@@ -98,7 +98,7 @@ iLLuMinator-4.7B/
9898└── SYSTEM_SUMMARY.md # Complete documentation
9999```
100100
101- ## 🎯 API Endpoints
101+ ## API Endpoints
102102
103103### CUDA API Server (Port 8002)
104104``` bash
@@ -122,7 +122,7 @@ curl -X POST "http://localhost:8001/chat" \
122122 -d ' {"message": "Hello!", "max_tokens": 50}'
123123```
124124
125- ## 🔬 Technical Highlights
125+ ## Technical Highlights
126126
127127### Modern Transformer Architecture
128128- ** Multi-Head Attention** with rotary position embeddings
@@ -148,7 +148,7 @@ with torch.cuda.amp.autocast():
148148- ** Gradient Accumulation** : Simulate larger batch sizes
149149- ** KV Caching** : Faster inference with memory trade-off
150150
151- ## 📈 Performance Benchmarks
151+ ## Performance Benchmarks
152152
153153### RTX 3070 (8GB VRAM)
154154- ** Training** : Stable with batch size 1, gradient accumulation 8
@@ -162,7 +162,7 @@ with torch.cuda.amp.autocast():
162162- ** Memory** : 500MB RAM usage
163163- ** Deployment** : Immediate deployment ready
164164
165- ## 🎓 Educational Value
165+ ## Educational Value
166166
167167This project demonstrates:
168168- ** Complete LLM Implementation** from scratch
@@ -171,43 +171,43 @@ This project demonstrates:
171171- ** Modern ML Practices** - mixed precision, checkpointing
172172- ** Scalable Architecture** from 120M to 4.9B parameters
173173
174- ## 🔄 Development Workflow
174+ ## Development Workflow
175175
1761761 . ** Prototype** with practical model (fast iteration)
1771772 . ** Scale up** to CUDA model (production quality)
1781783 . ** Deploy** appropriate model based on hardware
1791794 . ** Monitor** performance and optimize
180180
181- ## 🎉 Achievement Summary
181+ ## Achievement Summary
182182
183- ✅ ** Removed all web scraping** - Clean LLM implementation
184- ✅ ** Built 4.9B parameter model** - Production-scale transformer
185- ✅ ** CUDA optimization** - RTX 3070 ready with all optimizations
186- ✅ ** Practical alternative** - 120M model for immediate use
187- ✅ ** Complete pipeline** - Training, inference, API, client
188- ✅ ** Production ready** - Error handling, monitoring, documentation
183+ ** Removed all web scraping** - Clean LLM implementation
184+ ** Built 4.9B parameter model** - Production-scale transformer
185+ ** CUDA optimization** - RTX 3070 ready with all optimizations
186+ ** Practical alternative** - 120M model for immediate use
187+ ** Complete pipeline** - Training, inference, API, client
188+ ** Production ready** - Error handling, monitoring, documentation
189189
190- ## 🚀 Ready for Your RTX 3070
190+ ## Ready for Your RTX 3070
191191
192192The CUDA-optimized model is specifically tuned for RTX 3070:
193193- ** Mixed Precision** : Automatic FP16/FP32 optimization
194194- ** Memory Management** : Fits comfortably in 8GB VRAM
195195- ** Thermal Optimization** : Efficient computation patterns
196196- ** Driver Support** : Compatible with latest NVIDIA drivers
197197
198- ## 📞 Getting Started
198+ ## Getting Started
199199
200200Choose your path:
201201
202- ** 🔥 High Performance (RTX 3070+)**
202+ ** High Performance (RTX 3070+)**
203203``` bash
204204pip install -r requirements_cuda.txt
205205python illuminator_cuda.py
206206python train_cuda.py
207207python cuda_api_server.py
208208```
209209
210- ** 💻 Practical Development**
210+ ** Practical Development**
211211``` bash
212212pip install -r requirements_clean.txt
213213cd practical_model
0 commit comments