Skip to content

Commit 6e61837

Browse files
authored
Update README.md
1 parent d6e7d3b commit 6e61837

File tree

1 file changed

+35
-35
lines changed

1 file changed

+35
-35
lines changed

README.md

Lines changed: 35 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -1,24 +1,24 @@
11
# iLLuMinator 4.9B - Advanced Large Language Model
22

3-
## 🎯 Complete AI System Built From Scratch
3+
## Complete AI System Built From Scratch
44

55
A comprehensive Large Language Model implementation featuring both a production-ready 4.9 billion parameter CUDA-optimized model and a practical 120 million parameter CPU model.
66

7-
## 🏗️ Architecture Overview
7+
## Architecture Overview
88

9-
### 🔥 CUDA Model (4.9B Parameters)
9+
### CUDA Model (4.9B Parameters)
1010
- **Target Hardware**: RTX 3070, RTX 3080, RTX 3090, A100
1111
- **Optimizations**: Mixed precision, Flash attention, CUDA kernels
1212
- **Performance**: 5-10 tokens/second on RTX 3070
1313
- **Memory**: ~6-7GB VRAM for inference
1414

15-
### 💻 Practical Model (120M Parameters)
15+
### Practical Model (120M Parameters)
1616
- **Target Hardware**: CPU, laptops, edge devices
1717
- **Performance**: 10-12 tokens/second on CPU
1818
- **Memory**: ~500MB RAM
1919
- **Use Case**: Development, testing, resource-constrained environments
2020

21-
## 🚀 Quick Start
21+
## Quick Start
2222

2323
### For RTX 3070/3080/3090 Users (Recommended)
2424

@@ -52,31 +52,31 @@ python practical_api_server.py
5252
# Access: http://localhost:8001
5353
```
5454

55-
## 📊 Model Specifications
55+
## Model Specifications
5656

5757
| Model | Parameters | Layers | Heads | Hidden | Context | Memory | Speed |
5858
|-------|------------|--------|-------|--------|---------|--------|-------|
5959
| CUDA | 4.99B | 30 | 28 | 3584 | 2048 | 6-7GB | 5-10 tok/s |
6060
| Practical | 124M | 12 | 12 | 768 | 1024 | 500MB | 10-12 tok/s |
6161

62-
## 🔧 Features
62+
## Features
6363

6464
### Core Capabilities
65-
- **Complete Transformer Architecture** - Built from scratch
66-
- **Custom Tokenizer** - GPT-2 compatible with 50,260 vocabulary
67-
- **CUDA Acceleration** - Optimized for NVIDIA RTX series
68-
- **Mixed Precision Training** - FP16/FP32 for faster training
69-
- **Production API** - FastAPI servers with streaming support
70-
- **Interactive Interface** - Command-line chat client
65+
- **Complete Transformer Architecture** - Built from scratch
66+
- **Custom Tokenizer** - GPT-2 compatible with 50,260 vocabulary
67+
- **CUDA Acceleration** - Optimized for NVIDIA RTX series
68+
- **Mixed Precision Training** - FP16/FP32 for faster training
69+
- **Production API** - FastAPI servers with streaming support
70+
- **Interactive Interface** - Command-line chat client
7171

7272
### Advanced Optimizations
73-
- 🔥 **Flash Attention** - Memory-efficient attention computation
74-
- 🔥 **Gradient Checkpointing** - Reduced memory usage during training
75-
- 🔥 **CUDA Kernels** - Low-level GPU optimizations
76-
- 🔥 **TensorFloat-32** - Automatic acceleration on RTX 30xx
77-
- 🔥 **Weight Tying** - Shared input/output embeddings
73+
- **Flash Attention** - Memory-efficient attention computation
74+
- **Gradient Checkpointing** - Reduced memory usage during training
75+
- **CUDA Kernels** - Low-level GPU optimizations
76+
- **TensorFloat-32** - Automatic acceleration on RTX 30xx
77+
- **Weight Tying** - Shared input/output embeddings
7878

79-
## 📁 Project Structure
79+
## Project Structure
8080

8181
```
8282
iLLuMinator-4.7B/
@@ -98,7 +98,7 @@ iLLuMinator-4.7B/
9898
└── SYSTEM_SUMMARY.md # Complete documentation
9999
```
100100

101-
## 🎯 API Endpoints
101+
## API Endpoints
102102

103103
### CUDA API Server (Port 8002)
104104
```bash
@@ -122,7 +122,7 @@ curl -X POST "http://localhost:8001/chat" \
122122
-d '{"message": "Hello!", "max_tokens": 50}'
123123
```
124124

125-
## 🔬 Technical Highlights
125+
## Technical Highlights
126126

127127
### Modern Transformer Architecture
128128
- **Multi-Head Attention** with rotary position embeddings
@@ -148,7 +148,7 @@ with torch.cuda.amp.autocast():
148148
- **Gradient Accumulation**: Simulate larger batch sizes
149149
- **KV Caching**: Faster inference with memory trade-off
150150

151-
## 📈 Performance Benchmarks
151+
## Performance Benchmarks
152152

153153
### RTX 3070 (8GB VRAM)
154154
- **Training**: Stable with batch size 1, gradient accumulation 8
@@ -162,7 +162,7 @@ with torch.cuda.amp.autocast():
162162
- **Memory**: 500MB RAM usage
163163
- **Deployment**: Immediate deployment ready
164164

165-
## 🎓 Educational Value
165+
## Educational Value
166166

167167
This project demonstrates:
168168
- **Complete LLM Implementation** from scratch
@@ -171,43 +171,43 @@ This project demonstrates:
171171
- **Modern ML Practices** - mixed precision, checkpointing
172172
- **Scalable Architecture** from 120M to 4.9B parameters
173173

174-
## 🔄 Development Workflow
174+
## Development Workflow
175175

176176
1. **Prototype** with practical model (fast iteration)
177177
2. **Scale up** to CUDA model (production quality)
178178
3. **Deploy** appropriate model based on hardware
179179
4. **Monitor** performance and optimize
180180

181-
## 🎉 Achievement Summary
181+
## Achievement Summary
182182

183-
**Removed all web scraping** - Clean LLM implementation
184-
**Built 4.9B parameter model** - Production-scale transformer
185-
**CUDA optimization** - RTX 3070 ready with all optimizations
186-
**Practical alternative** - 120M model for immediate use
187-
**Complete pipeline** - Training, inference, API, client
188-
**Production ready** - Error handling, monitoring, documentation
183+
**Removed all web scraping** - Clean LLM implementation
184+
**Built 4.9B parameter model** - Production-scale transformer
185+
**CUDA optimization** - RTX 3070 ready with all optimizations
186+
**Practical alternative** - 120M model for immediate use
187+
**Complete pipeline** - Training, inference, API, client
188+
**Production ready** - Error handling, monitoring, documentation
189189

190-
## 🚀 Ready for Your RTX 3070
190+
## Ready for Your RTX 3070
191191

192192
The CUDA-optimized model is specifically tuned for RTX 3070:
193193
- **Mixed Precision**: Automatic FP16/FP32 optimization
194194
- **Memory Management**: Fits comfortably in 8GB VRAM
195195
- **Thermal Optimization**: Efficient computation patterns
196196
- **Driver Support**: Compatible with latest NVIDIA drivers
197197

198-
## 📞 Getting Started
198+
## Getting Started
199199

200200
Choose your path:
201201

202-
**🔥 High Performance (RTX 3070+)**
202+
**High Performance (RTX 3070+)**
203203
```bash
204204
pip install -r requirements_cuda.txt
205205
python illuminator_cuda.py
206206
python train_cuda.py
207207
python cuda_api_server.py
208208
```
209209

210-
**💻 Practical Development**
210+
**Practical Development**
211211
```bash
212212
pip install -r requirements_clean.txt
213213
cd practical_model

0 commit comments

Comments
 (0)